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Finding Most Influential Nodes

• We want to find the set of nodes that can 
cause the highest effect to the network

• Applications:

– Viral marketing: Find a set of users to give 
coupons

– Network mining: Find out most 
important/infectious blogs
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Influence Maximization
• We are given a graph, and probabilities on the edges.
• f(S): Expected # active nodes at the end with the cascade 

model if we start with a set S of active nodes
• Problem: Find set  S: |S| ≤ k that maximizes  f: )(max

:
Sf
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The problem is NP-hard 
(reduction from set cover)

Can we show that  f is 
nondecreasing and submodular?
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Submodular Functions

• Let V be a set of elements

• Let f be a set function:

f: V  R

• f is nondecreasing if    f(S∪{v}) – f(S) ≥ 0

• f is submodular if

f(S∪{v}) – f(S) ≥ f(T∪{v}) – f(T),

for S  T.
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Submodular Functions II

• Submodularity is similar to concavity (but for sets)

• Diminishing returns

S T
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Submodular Function Example
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Submodular Function Example

S
S: set of nodes
R(S): Set of nodes reachable from S
f(S) = |R(S)| = # nodes reachable from S

Here:
f(S) = 6
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Submodular Function Example

S

v

S: set of nodes
R(S): Set of nodes reachable from S
f(S) = |R(S)| = # nodes reachable from S

Here:
f(S) = 6
f(S∪{v}) = 10
f(S∪{v}) – f(S) = 4
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Submodular Function Example

S

T

v

S: set of nodes
R(S): Set of nodes reachable from S
f(S) = |R(S)| = # nodes reachable from S

Here:
f(S) = 6
f(S∪{v}) = 10
f(S∪{v}) – f(S) = 4

f(T) = 11
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Submodular Function Example

S

T

v

S: set of nodes
R(S): Set of nodes reachable from S
f(S) = |R(S)| = # nodes reachable from S

Here:
f(S) = 6
f(S∪{v}) = 10
f(S∪{v}) – f(S) = 4

f(T) = 11
f(T∪{v}) = 14
f(T∪{v}) – f(T) = 3

f(S∪{v}) – f(S) ≥ f(T∪{v}) – f(T)
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Submodular Function Example

S

T

v

S: set of nodes
R(S): Set of nodes reachable from S
f(S) = |R(S)| = # nodes reachable from S

Here:
f(S) = 6
f(S∪{v}) = 10
f(S∪{v}) – f(S) = 4

f(T) = 11
f(T∪{v}) = 14
f(T∪{v}) – f(T) = 3

f(S∪{v}) – f(S) ≥ f(T∪{v}) – f(T)
f is a submodular function

Whatever I gain by adding v to T 
I also gain by adding v to S
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Submodular Function Maximization

• Consider a set function f: V  R that is nondecreasing and 
submodular

• We want to find a subset S of k elements from V that maximizes f:

• An easy strategy is the greedy:

– S = 
– While (|S| < k)

• Find an element   v   that maximizes   f(S∪{v}) 
• S = S∪{v}) 

– Return S

• Theorem. The greedy algorithm gives a (1-1/e)  0.63 approximation.

)(max
:

Sf
kSVS 
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Back to Influence Maximization
• We are given a graph, and probabilities on the edges.
• f(S): Expected # active nodes at the end with the cascade 

model if we start with a set S of active nodes
• Problem: Find set  S: |S| ≤ k that maximizes  f: )(max

:
Sf

kSVS 
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Can we show that  f is 
nondecreasing and submodular?

If we show it then we can get a 
(1-1/e) approximation.
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Show that f(S) is submodular

• Fix a set S and consider a 
particular scenario  ω of the 
cascade model . 

• f(S, ω): # active nodes at the 
end

• Then
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Show that f(S) is submodular
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particular scenario  ω of the 
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Show that f(S) is submodular

• Fix a set S and consider a 
particular scenario  ω of the 
cascade model . 

• f(S, ω): # active nodes at the 
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Show that f(S) is submodular

• Fix a set S and consider a 
particular scenario  ω of the 
cascade model . 

• f(S, ω): # active nodes at the 
end

• Then
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Show that g(S) = f(S,ω) is submodular

• We first show that for a fixed scenario ω, g(S) = f(S,ω) is 
submodular.

• To show that we will view the cascading model in a different way
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Assume that we flip the 
coins for the edges in 
the beginning

Given an initial set S
look at the points 
reachable from S in 
the modified graph

A different view of the process
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Another view of the cascading model
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The cascading model and the new model give the same set of points in the end

But we already shown that g(S) is submodular
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Back to f(S)

• For a fixed ω we showed that the 
function g(S) = f(S, ω) is submodular

• But we want to show that f(S) is 
submodular

• We have:

• Theorem. A nonnegative linear 
combination of submodular functions 
is submodular

• We are DONE
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